Share optimized solutions, professional valve knowledge and industry news

Please enter the relevant terms or keywords you need to consult, and relevant articles will appear in the search results. If you can’t find the answer you need, please feel free to contact us and we will be happy to help. Or you can directly send an email to [email protected]

How to Size a Level Control Valve

When it comes to sizing a level control valve, there are several factors to consider such as the type of media being regulated, flow rate requirements, pressure drops, and line size/length. Proper selection is critical for having an effective system and so it’s important to select one that is best suited for your system's needs while staying within its stated specifications .
Table of Contents
    Add a header to begin generating the table of contents

    Sizing a level control valve correctly is essential for having an effective system. A level control valve is used to manually or automatically regulate the flow of liquid in a liquid-level system. The size of the valve depends on various factors, such as the type of medium regulated, the required flow rate, pressure drops, and line size and length.

    valve sizing
    valve sizing

    The first step in sizing a level control valve is to determine its application. For this purpose, you need to consider the type of media being controlled, its characteristics (such as viscosity), system design parameters such as curve slopes, and other important considerations like pressure drops and line length. Once these details are established, you can proceed with finding the optimal valve size that will meet your requirements.

    Next, it’s important to establish the operating range for the level control valves, including their minimum, normal, and maximum flow rates and maximum pressure drops across the valve. This information should be available in the manufacturer’s specifications or engineering design. You should also consider any shutoff or throttling requirements you might have because this affects how far apart the minimum and maximum pressure drops must be set in order for your system to operate properly.

    Finally, select a valve size that best meets your requirements while staying within its stated operating parameters. Once all these steps are completed, you can install the level control valve into your system and adjust its setting accordingly for proper operation.

    LCV(Level Control Valve) Used Separator System

    Level control valves are everywhere in the separator system, we just listed one sample from a chemical plant. The separator pressure is 75 psig and the downstream of LCV goes to a vessel where pressure is maintained by blanketing at 5 psig. From figure 1 you can see an LCV is from a separator. Here we are going to discuss what DP drop pressure should be considered for the level control valve? should be just simple 75psig – 5 psig = 70psig ? or we need to consider pressure drop across the piping for the downstream of LCV?

    separtor
    separator

    For this case 75 psig upstream pressure and 5 psig downstream pressure will get you close enough. The LCV will modulate to regulate the flow. If we really wanted to be meticulous, we’d do a full pressure balance that would look something like this.

    Upstream pressure = vapor static pressure (75 psig) + liquid head – line losses

    Downstream pressure = vapor static pressure (5 psig) + line losses

    But the actual operating conditions are going to vary from what you anticipate, especially during startup.

    Increasing the downstream pressure may or may not affect the capacity of the valve. If the valve is still operating under choked conditions, capacity is not affected. However, if the downstream pressure rises above the choke point, the valve will need to open further to pass the same amount of flow.

    We should consider the pressure drop across the piping (and the liquid head) if they can be significant. They may not be significant compared to the 70 psi difference in operating pressure between the vessels.

    The pressure downstream of the LCV will depend on the operating pressure of the downstream vessel and the backpressure due to flow from the CV to the vessel.

    If the pressure downstream of the LCV rises, the level will start to back up, and the CV will open more to reduce the system dP to compensate. This is the purpose of having a control valve.

    3 Steps for Sizing Control Valves for Liquids Fluid

    The IEC technique for sizing control valves for liquid flow is detailed in the steps that follow. During any valve sizing operation, each of these phases is crucial and must be addressed. Steps 3 and 4 include the identification of specific sizing parameters that, depending on the service circumstances of the size problem, may or may not be required in the sizing equation. Refer to the relevant factor determination section(s) in the text following the sixth step if one, two, or all three of these size factors need to be included in the solution for a particular sizing problem.

    Step 1: Specify the following variables needed to size Level Control valve

    • Desired design

    • Fluid of operation (water, oil, etc.)

    • Appropriate service conditions q or w, P1 or P2, P, T1 or Gf or Pv or Pc.

    Experience with a variety of valve sizing issues is required to understand which phrases are appropriate for a particular size technique. Refer to the Abbreviations and Terminology Table 1 for a comprehensive explanation of any unknown or unfamiliar-appearing words.

    table 1 symbol data for control valves
    table 1 symbol data for control valves

    Step 2: Determine the constant N in the equation.

    N is a numerical constant used in each of the flow equations to facilitate the use of different unit systems. In Equation Constants Table -2, the values and units for these different constants are provided.

    equation constants
    equation constants

    Use N1 if the flow rate is expressed in volumetric terms (gallons per minute or Nm3 per hour).

    Utilize N6 if the flow rate is expressed in mass units (lb/hr or kg/hr).

    Step 3: Determine the pipe geometry factor, Fp.

    Fp is a correction factor that accounts for pressure losses caused by pipe fittings such as reducers, elbows, and tees that may be linked directly to the inlet and outlet connections of the to-be-sized control valve. In the sizing method, the Fp factor must be addressed if such fittings are attached to the valve.

    If no fittings are linked to the valve, however, Fp has a value of 1 and is eliminated from the sizing calculation.

    Determine the Fp factors for rotary valves with reducers (swaged installations) and other valve designs and fitting styles using the process for computing Fp, the Piping Geometry Factor.

    reliable control valves in china
    reliable control valves in china

    Step 4: Determine qmax (the maximum flow rate under specified upstream circumstances) or Pmax (the allowable sizing pressure drop).

    The maximum or limiting flow rate (qmax), also known as choked flow, is characterized by no increase in flow rate with rising pressure difference and constant upstream circumstances. In liquids, choking happens when the static pressure within the valve falls below the liquid’s vapor pressure, causing the liquid to evaporate.

    To account for the potential of blocked flow conditions within the valve, the IEC standard stipulates the computation of a maximum permitted pressure drop (Pmax). The sizing equation utilizes the smaller of the computed Pmax value and the actual pressure drop given under service circumstances. Pmax can be computed using the method for finding qmax, the Maximum Flow Rate, or Pmax, the Allowable Sizing Pressure Drop, if it is desirable to account for the potential of blocked flow circumstances. If it is known that choked flow conditions will not develop within the valve, it is not necessary to compute Pmax.

    Step 5: Solve for the necessary Cv using the correct equation

    • For units of volumetric flow rate,

    volumetric flow rate

    • Regarding mass flow units:

    mass flow units

    In addition to Cv, Kv and Av are also employed as flow coefficients, mainly outside of North America. Existence of the following relationships:

    Kv = (0.865) (Cv)

    Av = (2.40 x 10-5) (Cv)

    Step 6: Select the size of the valve based on the flow coefficient table and the determined Cv value.

    cv value
    cv value

    In the world of fluid control systems, proper control valve sizing is crucial to ensure efficient operation and optimal performance. Utilizing a well-calculated control valve sizing equation, engineers can accurately determine the appropriate dimensions for a control valve sizing calculation. This process involves a thorough control valve calculation that takes into account various factors such as fluid velocity, pressure differential, and maximum required flow rate. As a result, control valve selection becomes a more informed decision, with popular choices like Fisher control valve sizing and flow control valve sizing offering reliable solutions. Ultimately, a properly sized control valve will prevent issues associated with oversized control valves and enable seamless integration of control valves within a fluid control system.

    In conclusion

    Sizing a level control valve properly involves taking into account various parameters, such as the type of media being controlled, the required flow rate, pressure drops, etc., followed by selecting one that is best suited for your system’s needs while staying within its stated specifications. Properly sized valves can ensure effective performance from your liquid-level systems over time.

    thinktank stone valve manufacturer
    Facebook
    Twitter
    LinkedIn
    Pinterest
    Print
    Picture of Will Don

    Will Don

    After earning my bachelor's degree in mechanical engineering from Zhejiang Normal University in 2008, l was fortunate enough to begin my career with Siemens, Fisher, and YTC, focusing on control valve accessories. Over the past dozen years, l've poured my heart and energy into understanding technology and fluid solutions for control valves.
    Now, as the marketing director for THINKTANK, a trusted branch of the Taiwan STONE valve group, I can't help butf eel proud of how far we've come. Our knowledge isn't just reaching professionals like engineer and valve distributors; it's also inspiring the next generation of automation college students.
    l genuinely hope you're enjoying our articles and finding them helpful.Your thoughts, questions, and feedback mean the world to me, so please don't hesitate to reach out to marketing[at]cncontrolvalve.com. Whether you're a seasoned expert or just curious about the field, I'm here to connect, share, and learn together.

    All Posts »

    I am the author of this article, and also the CEO and marketing director of THINKTANK, with 15 years of experience in the industrial valve industry. If you have any questions, you can contact me at any time.

    Subscribe Now

    Receive the latest product information and industry news.

    We value your privacy. Your information will be kept confidential.

    Contact Us

    Just fill out your name, email address, and a brief description of your inquiry in this form. We will contact you within 24 hours.

    The Latest News
    3 functional pressure vacuum valve

    3-Function Pressure Vacuum Valve

    The 3-Function Pressure Vacuum Valve improves on the basic functionality of an air vent head by adding a nitrogen gas preservation feature. It opens at ...
    Read More
    spring return electric actuated ball valve fail safe

    Spring Return Electric Actuator: Technical Principles, Applications and Common Valve Types

    The Spring Return Electric Actuator is a critical device for ensuring safety in high-risk environments such as tunnels, subways, marine applications, and other areas where ...
    Read More
    pilot operated breather valve

    Case Study: How to Select a Suitable Breather Valve to Handle Back Pressure

    In industrial storage tank applications, it is critical to select the right pressure and vacuum relief valves (PVRV) to ensure the safe operation of the ...
    Read More
    axial piston high pressure pump

    High Pressure Pumps Axial Piston Pumps

    In the past 5 years, we made our HPR/HPH series axial piston pumps as OEM products for a well-known brand. These pumps have been successful ...
    Read More
    breaker valve manufacturer

    VB14 and VB21 Vacuum Breaker Installation

    VB14 Vacuum Breaker Description VB14 is a small special vacuum breakers used in condensing vapour/steam or liquid systems, and it made of Brass material, and ...
    Read More
    common valve abbreviation guide

    Common Valve Abbreviation Guide

    In industrial manufacturing and instrument maintenance, you’ll see many abbreviations for valves. It’s important for engineers, maintenance people, and students to know these abbreviations because ...
    Read More
    spray & fuse coating

    Comprehensive Technical Guide on Hard Coating For Severe Service Valve

    One of the most effective ways to improve the durability and performance of valves in in severe service environments, where valves are work at extreme ...
    Read More
    dosing valve DN100 lime dosing system

    What is a Lime Dosing Valve and How Does It Work

    In the world of water treatment and chemical processing, it’s important to control lime dosing accurately. Getting the pH right and avoiding lime blockages can ...
    Read More
    concentrated solar power schematic

    Selection and Application of Molten Salt Control Valves

    In recent years, as the environmental impact of traditional energy sources such as coal and petrochemicals has become more and more of a concern, there ...
    Read More

    Contact Us

    With expertise in valves and rich experience in the oil&gas, chemical industry, textile mills, power plants, and sugar mills. THINKTANK has become the premier manufacturer of next-generation precision control valves.

    With a customer base that includes over 42 of the world’s leading engineering&contractors and international valve brands, THINKTANK Valves offers cost-effective valves that help our customers achieve automated process control without paying high prices.

    Why are more and more international valve brands choosing THINKTANK for OEM service?

    Brand is reputation, which not only requires high valve technology, but also great comercial support and fast response after-sales service and delivery time. They will not gamble their brand on an unknown product

    Get an Instant Quote

    Avoid your inquiry is delay response, please enter your WhatsApp/Wechat/Skype along with the message, so we can contact you at the very first time.

    We will reply you within 24 hours. If for urgent case, please add WhatsApp: +86 185 1656 9221, or WeChat: +86 199 2125 0077. Or call +86 189 5813 8289 directly. 

    Get An Instant Quote

    Joy Preview

    Get An Instant Quote

    We will reply you within 24 hours. If for urgent case, please add WhatsApp: +86 199 2125 0077, or WeChat: +86 199 2125 0077. Or call +86 189 5813 8289 directly. 

    Direct to Control Valve Factory With Competitive Price & Reliable Quality

    Joy Preview
    Joy Preview

    Get An Instant Quote

    Just leave your name, email, and simple message or requirements, We will contact you within 1 hour.

    WhatsApp: +86 199 2125 0077

    Skype ID: sowell85

    Wechat ID: +86 199 2125 0077