thintank control valve manufacturer

Share optimized solutions, professional valve knowledge and industry news

Please enter the relevant terms or keywords you need to consult, and relevant articles will appear in the search results. If you can’t find the answer you need, please feel free to contact us and we will be happy to help. Or you can directly send an email to [email protected]

How to Size a Level Control Valve

When it comes to sizing a level control valve, there are several factors to consider such as the type of media being regulated, flow rate requirements, pressure drops, and line size/length. Proper selection is critical for having an effective system and so it’s important to select one that is best suited for your system's needs while staying within its stated specifications .
Table of Contents
    Add a header to begin generating the table of contents

    Sizing a level control valve correctly is essential for having an effective system. A level control valve is used to manually or automatically regulate the flow of liquid in a liquid-level system. The size of the valve depends on various factors, such as the type of medium regulated, the required flow rate, pressure drops, and line size and length.

    valve sizing
    valve sizing

    The first step in sizing a level control valve is to determine its application. For this purpose, you need to consider the type of media being controlled, its characteristics (such as viscosity), system design parameters such as curve slopes, and other important considerations like pressure drops and line length. Once these details are established, you can proceed with finding the optimal valve size that will meet your requirements.

    Next, it’s important to establish the operating range for the level control valves, including their minimum, normal, and maximum flow rates and maximum pressure drops across the valve. This information should be available in the manufacturer’s specifications or engineering design. You should also consider any shutoff or throttling requirements you might have because this affects how far apart the minimum and maximum pressure drops must be set in order for your system to operate properly.

    Finally, select a valve size that best meets your requirements while staying within its stated operating parameters. Once all these steps are completed, you can install the level control valve into your system and adjust its setting accordingly for proper operation.

    LCV(Level Control Valve) Used Separator System

    Level control valves are everywhere in the separator system, we just listed one sample from a chemical plant. The separator pressure is 75 psig and the downstream of LCV goes to a vessel where pressure is maintained by blanketing at 5 psig. From figure 1 you can see an LCV is from a separator. Here we are going to discuss what DP drop pressure should be considered for the level control valve? should be just simple 75psig – 5 psig = 70psig ? or we need to consider pressure drop across the piping for the downstream of LCV?

    separtor
    separator

    For this case 75 psig upstream pressure and 5 psig downstream pressure will get you close enough. The LCV will modulate to regulate the flow. If we really wanted to be meticulous, we’d do a full pressure balance that would look something like this.

    Upstream pressure = vapor static pressure (75 psig) + liquid head – line losses

    Downstream pressure = vapor static pressure (5 psig) + line losses

    But the actual operating conditions are going to vary from what you anticipate, especially during startup.

    Increasing the downstream pressure may or may not affect the capacity of the valve. If the valve is still operating under choked conditions, capacity is not affected. However, if the downstream pressure rises above the choke point, the valve will need to open further to pass the same amount of flow.

    We should consider the pressure drop across the piping (and the liquid head) if they can be significant. They may not be significant compared to the 70 psi difference in operating pressure between the vessels.

    The pressure downstream of the LCV will depend on the operating pressure of the downstream vessel and the backpressure due to flow from the CV to the vessel.

    If the pressure downstream of the LCV rises, the level will start to back up, and the CV will open more to reduce the system dP to compensate. This is the purpose of having a control valve.

    3 Steps for Sizing Control Valves for Liquids Fluid

    The IEC technique for sizing control valves for liquid flow is detailed in the steps that follow. During any valve sizing operation, each of these phases is crucial and must be addressed. Steps 3 and 4 include the identification of specific sizing parameters that, depending on the service circumstances of the size problem, may or may not be required in the sizing equation. Refer to the relevant factor determination section(s) in the text following the sixth step if one, two, or all three of these size factors need to be included in the solution for a particular sizing problem.

    Step 1: Specify the following variables needed to size Level Control valve

    • Desired design

    • Fluid of operation (water, oil, etc.)

    • Appropriate service conditions q or w, P1 or P2, P, T1 or Gf or Pv or Pc.

    Experience with a variety of valve sizing issues is required to understand which phrases are appropriate for a particular size technique. Refer to the Abbreviations and Terminology Table 1 for a comprehensive explanation of any unknown or unfamiliar-appearing words.

    table 1 symbol data for control valves
    table 1 symbol data for control valves

    Step 2: Determine the constant N in the equation.

    N is a numerical constant used in each of the flow equations to facilitate the use of different unit systems. In Equation Constants Table -2, the values and units for these different constants are provided.

    equation constants
    equation constants

    Use N1 if the flow rate is expressed in volumetric terms (gallons per minute or Nm3 per hour).

    Utilize N6 if the flow rate is expressed in mass units (lb/hr or kg/hr).

    Step 3: Determine the pipe geometry factor, Fp.

    Fp is a correction factor that accounts for pressure losses caused by pipe fittings such as reducers, elbows, and tees that may be linked directly to the inlet and outlet connections of the to-be-sized control valve. In the sizing method, the Fp factor must be addressed if such fittings are attached to the valve.

    If no fittings are linked to the valve, however, Fp has a value of 1 and is eliminated from the sizing calculation.

    Determine the Fp factors for rotary valves with reducers (swaged installations) and other valve designs and fitting styles using the process for computing Fp, the Piping Geometry Factor.

    reliable control valves in china
    reliable control valves in china

    Step 4: Determine qmax (the maximum flow rate under specified upstream circumstances) or Pmax (the allowable sizing pressure drop).

    The maximum or limiting flow rate (qmax), also known as choked flow, is characterized by no increase in flow rate with rising pressure difference and constant upstream circumstances. In liquids, choking happens when the static pressure within the valve falls below the liquid’s vapor pressure, causing the liquid to evaporate.

    To account for the potential of blocked flow conditions within the valve, the IEC standard stipulates the computation of a maximum permitted pressure drop (Pmax). The sizing equation utilizes the smaller of the computed Pmax value and the actual pressure drop given under service circumstances. Pmax can be computed using the method for finding qmax, the Maximum Flow Rate, or Pmax, the Allowable Sizing Pressure Drop, if it is desirable to account for the potential of blocked flow circumstances. If it is known that choked flow conditions will not develop within the valve, it is not necessary to compute Pmax.

    Step 5: Solve for the necessary Cv using the correct equation

    • For units of volumetric flow rate,

    volumetric flow rate

    • Regarding mass flow units:

    mass flow units

    In addition to Cv, Kv and Av are also employed as flow coefficients, mainly outside of North America. Existence of the following relationships:

    Kv = (0.865) (Cv)

    Av = (2.40 x 10-5) (Cv)

    Step 6: Select the size of the valve based on the flow coefficient table and the determined Cv value.

    cv value
    cv value

    In the world of fluid control systems, proper control valve sizing is crucial to ensure efficient operation and optimal performance. Utilizing a well-calculated control valve sizing equation, engineers can accurately determine the appropriate dimensions for a control valve sizing calculation. This process involves a thorough control valve calculation that takes into account various factors such as fluid velocity, pressure differential, and maximum required flow rate. As a result, control valve selection becomes a more informed decision, with popular choices like Fisher control valve sizing and flow control valve sizing offering reliable solutions. Ultimately, a properly sized control valve will prevent issues associated with oversized control valves and enable seamless integration of control valves within a fluid control system.

    In conclusion

    Sizing a level control valve properly involves taking into account various parameters, such as the type of media being controlled, the required flow rate, pressure drops, etc., followed by selecting one that is best suited for your system’s needs while staying within its stated specifications. Properly sized valves can ensure effective performance from your liquid-level systems over time.

    thinktank stone valve manufacturer
    Facebook
    Twitter
    LinkedIn
    Pinterest
    Print
    Picture of Will Don

    Will Don

    After earning my bachelor's degree in mechanical engineering from Zhejiang Normal University in 2008, l was fortunate enough to begin my career with Siemens, Fisher, and YTC, focusing on control valve accessories. Over the past dozen years, l've poured my heart and energy into understanding technology and fluid solutions for control valves.
    Now, as the marketing director for THINKTANK, a trusted branch of the Taiwan STONE valve group, I can't help butf eel proud of how far we've come. Our knowledge isn't just reaching professionals like engineer and valve distributors; it's also inspiring the next generation of automation college students.
    l genuinely hope you're enjoying our articles and finding them helpful.Your thoughts, questions, and feedback mean the world to me, so please don't hesitate to reach out to marketing[at]cncontrolvalve.com. Whether you're a seasoned expert or just curious about the field, I'm here to connect, share, and learn together.

    All Posts »

    I am the author of this article, and also the CEO and marketing director of THINKTANK, with 15 years of experience in the industrial valve industry. If you have any questions, you can contact me at any time.

    Subscribe Now

    Receive the latest product information and industry news.

    We value your privacy. Your information will be kept confidential.

    Contact Us

    Just fill out your name, email address, and a brief description of your inquiry in this form. We will contact you within 24 hours.

    The Latest News
    lined ball valves akh5

    Top 10 Ceramic Valves Manufacturers in 2024

    Ceramic valves are used in highly demanding services including slurry, erosive, corrosive, and scaling applications.
    Read More
    globe control valve body

    Información sobre los tipos de válvulas industriales

    Existen numerosos tipos de válvulas industriales, que pueden alcanzar hasta varios cientos, y cada tipo de válvula está diseñado para satisfacer las necesidades específicas ...
    Read More
    multi port ball valves thinktank

    Multi-Port Ball Valves 3-Way, 4-Way, and 5-Way

    Multi-port ball valves come in 3-way, 4-way, or 5-way configurations. They use full-bore balls, which means you can switch high flow rates between different pipelines. ...
    Read More
    ball valve npt (1)

    Why Material Test is Crucial When Purchasing Valves

    Today, one of our regular customers in Pakistan sent us a message that a large number of SS316 3PC Ball valves with threaded connections that ...
    Read More
    oil and gas forged steel ball valve

    Comprehensive Guide to Forged Steel Valve A105N

    In industrial valve selection, material quality is critical. Understanding the characteristics of each material helps engineers and buyers make the best decisions. Forged Steel Valve ...
    Read More
    industrial diesel power1

    Top 5 Fusible Link Valve Manufacturers in 2024

    In your quest to find the best fusible link valve manufacturer in the world, it’s important for every engineering company and terminal manager to make ...
    Read More
    valve world asia 2024 thinktank 1

    THINKTANK to Exhibit at Valve World Asia Expo 2024 on July 3-4

    We are excited to announce that THINKTANK will be participating in the Valve World Asia Expo on July 3-4 in Shanghai. We warmly welcome all ...
    Read More
    3 natural gas regulator (1)

    DN80 Natural Gas Regulator Manufactured in 2018

    Yesterday, we received an inquiry for the repair of a natural gas pressure regulator. Upon checking our records, we found that this valve was manufactured ...
    Read More
    training control valve

    Training Sessions on Control Valves

    Hello Everyone, I’m excited to share some news with you all directly from THINKTANK’s official website! Over the past few months, we’ve received a myriad ...
    Read More

    Contact Us

    With expertise in valves and rich experience in the oil&gas, chemical industry, textile mills, power plants, and sugar mills. THINKTANK has become the premier manufacturer of next-generation precision control valves.

    With a customer base that includes over 42 of the world’s leading engineering&contractors and international valve brands, THINKTANK Valves offers cost-effective valves that help our customers achieve automated process control without paying high prices.

    Why are more and more international valve brands choosing THINKTANK for OEM service?

    Brand is reputation, which not only requires high valve technology, but also great comercial support and fast response after-sales service and delivery time. They will not gamble their brand on an unknown product

    Get an Instant Quote

    We will reply you within 24 hours. If for urgent case, please add WhatsApp: +86 185 1656 9221, or WeChat: +86 199 2125 0077. Or call +86 189 5813 8289 directly. 

    Get An Instant Quote

    Joy Preview

    Get An Instant Quote

    We will reply you within 24 hours. If for urgent case, please add WhatsApp: +86 185 1656 9221, or WeChat: +86 199 2125 0077. Or call +86 189 5813 8289 directly. 

    Direct to Control Valve Factory With Competitive Price & Reliable Quality

    Joy Preview
    Joy Preview

    Get An Instant Quote

    Just leave your name, email, and simple message or requirements, We will contact you within 1 hour.

    WhatsApp: +86 185 1656 9221

    Skype ID: sowell85

    Wechat ID: +86 199 2125 0077